Some types of derivations in bounded commutative residuated lattices
نویسندگان
چکیده
منابع مشابه
FUZZY CONVEX SUBALGEBRAS OF COMMUTATIVE RESIDUATED LATTICES
In this paper, we define the notions of fuzzy congruence relations and fuzzy convex subalgebras on a commutative residuated lattice and we obtain some related results. In particular, we will show that there exists a one to one correspondence between the set of all fuzzy congruence relations and the set of all fuzzy convex subalgebras on a commutative residuated lattice. Then we study fuzzy...
متن کاملCommutative Idempotent Residuated Lattices
We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct. A residuated lattice is an algebra A = (A,∨,∧, ·, e, /, \) such that (A,∨,∧) is a lattice, (A, ·, e) is a monoid and for every a, b, c ∈ A ab ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c. The last condition is equivalent to the fact that (A,∨,∧, ·, e) is a lattice-ordered monoid and for every a, b ∈ A there is a great...
متن کاملNon-commutative Residuated Lattices*
Introduction and summary. In the theory of non-commutative rings certain distinguished subrings, one-sided and two-sided ideals, play the important roles. Ideals combine under crosscut, union and multiplication and hence are an instance of a lattice over which a non-commutative multiplication is defined.f The investigation of such lattices was begun by W. Krull (Krull [3]) who discussed decompo...
متن کاملCommutative integral bounded residuated lattices with an added involution
By a symmetric residuated lattice we understand an algebra A = (A,∨,∧, ∗,→,∼, 1, 0) such that (A,∨,∧, ∗,→, 1, 0) is a commutative integral bounded residuated lattice and the equations ∼∼ x = x and ∼ (x ∨ y) =∼ x∧ ∼ y are satisfied. The aim of the paper is to investigate properties of the unary operation ε defined by the prescription εx :=∼ x → 0. We give necessary and sufficient conditions for ...
متن کاملCommutative bounded integral residuated orthomodular lattices are Boolean algebras
We show that a commutative bounded integral orthomodular lattice is residuated iff it is a Boolean algebra. This result is a consequence of [7, Theorem 7.31]; however, our proof is independent and uses other instruments.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Hyperstructures and Logical Algebras
سال: 2020
ISSN: 2676-6019
DOI: 10.52547/hatef.jahla.1.4.2